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A method of constructing dual variational principles for problems of the seepage of an incompressible fluid in deformable media 
with complex rheology is presented. Dual variational principles of the fluid seepage in a typical deformable media with complex 
rheology [I, 2), namely, a Maxwell element, connected in parallel with a visco-plastic or elastic element, are constructed. The 
variational principles are derived from variational problems compiled for the constitutive relations for fluid and solid phases. 
0 2001 Elsevier Science Ltd. All rights reserved. 

The basis for compiling variational problems is a consideration of the minimum of the rate of energy 
dissipation and accumulation. One of the features of the construction of such variational principles is 
the coupling of the energy dissipation and accumulation mechanisms [3]. Another feature, unlike the 
methods described previously [4,5], is the construction of dual variational principles that are independent 
of one another. 

The purpose of the present paper is to develop further the method proposed in previous papers [6-9]$ 
and to demonstrate its practicability when constructing new variational principles. 

1. THE SCHEME FOR DERIVING THE VARIATIONAL PRINCIPLES 

Consider a mechanical system, the behaviour of which is determined by N dissipative mechanisms [3] 
‘Yi(Yi) (i = 1, 2,..* , N), where the dissipative potentials ‘T’i(Yi) are smooth convex functionals, 
Yi = Yi(c) are generalized velocities and c = {c,} is the set of independent variables c,. For example, 
in the case of two dissipative mechanisms (Yt = e(ri), Y2 = q): c = {ti, q}, where e is the deformation 
rate tensor, q is the seepage rate vector, ir is the displacement rate vector and u is the displacement 
vector. The dissipative mechanisms are assumed to be uncoupled [3], if any of the mechanisms ‘Pi(Yi) 
is independent of the variables c,, on which the remaining dissipative mechanisms depend. 

For steady processes, in the thermodynamics of irreversible processes, one of the variational principles 
is the principle of least energy dissipation, which is expressed by the minimum of the dissipative potentials 
PO, 111 

i(p(‘Wk Cp(‘) = i ‘uicyi> i=l (1-l) 

We will assume that, for the mechanical system considered, under steady conditions, a variational 
principle exists, the basis of which is functional (1.1). The variational principle will then have the following 
form 

(1.2) 
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whereft(c) and Fi(c) are linear functionals of the variables c,, and I is the boundary of the region R. 
It is clear from (1.2) that variational principles in other sets of variables can be written in the form 

inf sup I(c,b)= inf sup 
ceM~ b&fb cpMC b&b 

I(Y(.)-~*(.)+f(c.b))dR+ J~(c,b)fl 
Cl I- I (1.3) 

Y(e)= iYj(Yi), a*(*)= $@f(Xi), Xi =gradYi(Yi) 
i=l i=L+I 

where Xi = Xi(b) are generalized forces, b = {b,} is the set of independent variables b,,f(c, b) and 
F(c, b) are linear functionals of the variables c, and b,, and @):(XJ are conjugate dissipative potentials, 
related to the dissipative potentials ‘I’\zri(Yi) by a Young-Fenchel transformation [4] 

aqx;, = SUP[XiYi - yI;(Y,)] 
vi 

Variational principles in the generalized velocities (1.2) and in the generalized forces 

inf 
b&b 

/J(~*C)+h(b))da+ J!$(b)dr , cp*(.)= &$f&) 
I- I i=l 

are special forms of variational principle (1.3). 
Note that, in general, for coupled dissipation mechanisms, the functional cp*(.) will not be conjugate 

to the functional (9(.)[3]. 
Suppose a solution and a variational principle (1.3) exists for a certain boundary-value problem. In 

variational principle (1.3) it is required to establish the form of the functionalsf(c, b) and F(c, b), and 
also the set of constraints J4, and Mb, imposed on c, and b,. We will introduce the following notation 
for the variables in the solution. 

0 
c, = c,, b, =b:. Yi =Yi(C’)=Y,“, Xi = Xi(b”) = Xp 

We will formulate variational principle (1.3) corresponding to the variational problem 

infsupB(c,b)= i&sup J 
c b E b R [ 

‘I’(.)-@‘(.)- iXgYi + cX,Y; 1 dR (1.4) 
i=l i=L+I 

The solution CL, I$ of problem (1.3) is also the solution of problem (1.4) [12, 131. At the same time, 
even for a unique solution of problem (1.3) say ci, bh problem (1.4) can have a set of other solutions 
c~, b,, for which Yi(C) = Yi”, Xi(b) = X;. To construct a valid variational principle (1.3) it is necessary 
to convert variational problem (1.4) to the form (1.3). The conversions are assumed to be acceptable 
if CL, I& is a solution of the variational problems related by transformations. 

We will assume that, in the system considered, in addition to dissipation there is also accumulation 
of elastic energy, defined by the elastic convex smooth potentials Wi (Zj) (j = 1,2,. . . , K). For example, 
Zj = 4 is the strain tensor and dWj (Zj)/dZj = Pj, Pj = Uj is the stress tensor. By analogy with (1.1) we 
will write the functional which reflects the rate of energy dissipation and accumulation. 

I[ ~Yi(Yi)+ ~~j(Zj) n 
Q i=l j=l 1 

The derivatives Wi (Zj) in (1.5) can be represented in one of the following forms 

aWj(Z’) 
*j(Zj)= az,’ Zj or ci;.(Zj)~ 

Wj(Zj) - wj(z;-‘) 

I At 

(1.5) 

(1.6) 

where all the variables are given at the.current instant of time t, with the exception of zf-’ = Zj(t - 
At). In the first representation of (1.6) Zj = Zj(C), while in the second zj = Z~(C). If functional (1.5) is 
convex in the variable c,, the first representation for Wj(Zj) is possible if the variables c,, occurring in 
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ii(C), are expressed in terms of the variables c,, occurring in qi(YJ and in those potentials ~j(Zj) which 
are given by the second representation. In the case of two accumulation mechanisms 

the variational principle, like (1.2) will have a similar form, where 

cp(.)= &(Yi) ; wp, + w,(z2);+3z:-‘) 
i=l I 

while the corresponding variational problem will be 

cp(.)-$XpY,-P;Z, -pi 2 2 
z _zk-’ 

i=l At 

To construct dual variational principles we will write the variational problems similar to (1.4). 
The above discussion holds for constitutive relations of the subgradient type [12, 131 Xi E a’IJi(Yi) 

(Pi E aWj(Zj)) where ‘I’i(Yi) are convex eigenfunctionals, semicontinuous from below, Xi is the 
subgradient of the functional ?\Iri(Yi) at the point Yip and a’I!i(Yi) is the set of all subgradients of 
the functional ‘I’\IYi) at the point Yi, consisting of one element grad *\Iri(Yi) in the case of smooth 
*ityi). 

2. CONSTRUCTION OF THE VARIATIONAL PRINCIPLE 

We will write the system of equations of the seepage of an incompressible fluid in a deformable medium 
[14] in the form 

Ok.j -P,i =O (n,.j =O) (2.1) 

div q+div ti = 0 (2.2) 

q = -a~,(vpyavp or -vp=aY~qyaq (2.3) 

0; = 4j(&jj,eii) (2.4) 

where (2.1) and (2.2) are balancing equations, (2.3) and (2.4) are the constitutive relations for the 
fluid and solid phases, *Jq), Qp(Vp) are the dissipative and conjugate dissipative potentials for 
the fluid phase, p is the pressure, Ui are the components of the displacement vector u, a{ are the 
components of the effective stress tensor of, EU = (Ui,j + Uj,i)/2 are the components of the strain tensor 
E, eii = eQ II, are the components of the total stress tensor II = 6- p, and p is a spherical tensor with 
components Sip. 

The solid phase is modelled by a Maxwell element, connected in parallel with a viscous element 
[l, 21. In the Maxwell element the dissipative mechanism is determined by the potential qi(e,), the 
accumulation mechanism is determined by the potential Wz(ez), and in the viscous element the dissipative 
mechanism is determined by the potential *s(es). The constitutive relations (2.4) of this solid phase 
have the form 

01 = aYII(el>/ae,, u2= iW2(e2)&2, u3= ay3te3Pe3 (2.5) 

of= u1+ u3, (JI = u2, e = el + e2 = e3 (2.6) 

From considerations of the minimum rate of energy dissipation and accumulation, functionals (1.5) 
for the two representations of the potential WZ(eZ) will have the following respective forms 

~fp,(.)dQ= j Y,(q)+ ye, +Y3(e3)+Yq(q) dQ 
R [ 2 3 

(2.7) 
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i(pz(.)dSl= j Y,(e,)+ w2(e2)~w2(Ei-‘)+Y3(el)+‘Pq(q) dR 
3 

(2.8) 
n 

Taking relations (2.6) and the equality e2 = l t-’ + ezAt into account for Wz(e2) in (2.8) we conclude 
that functionals (2.7) and (2.8) have three independent variables c,. Variational problem (1.4) for 
functional (2.7) when c = {ir,, ir, q}, can be written in the form 

i:fB,(c)=i:fjo 
[ 
~,(.)-2~;ei+Vp’q dR (2.9) 

i=l 1 
Taking relations (2.1)-(2.6) into account we convert problem (2.9) to a variational principle 

i:fB,(c)=ilff~[cp,(.)-(ore, +us(e, -e,)+a;e3)+Vp”q]dR= 

=inf J[g,(.)-u>e+Vp”ql&l 
‘R 

= i;f i[cp, (.) - IQ+ - p”& + p.‘,q,]dR = 

=inf IcP,(.)dn-Ing,jli,cir+IpOq,~-Ipo(lii,i+qj.i)d~ = 
[ c n r I- n 1 

=cj;T2 
r 

li(~,(e,)+o~(e-e,)+Y~(e)+Yb(q))dn-r, +r, = 1 
= i;,f .I[ Y (eI 1 -uie, dR+ ] inf (i,qs(2,2 

r 
~(Y~(e)+o’,e+Yb(q))dR-r, +r, 1 

r, = jr~;~~i~dr, r3 = j POqndr, 
h r3 

(2.10) 

with the conditions 

ii=lig on r,, qn=qi on r,,r,+r,=r,+r,=r (2.11) 

The expressions c E (2.2) and 4 q E (2.2) in variational principle (2.10 denote that inf is considered 
on the set of these variables which satisfy balancing equation (2.2). Variational principle (2.10) can be 
split into two variational principles, which are independent at each instant of time 

inf I,, (e, ) = inf j (Y, (e, ) -aie, )dR 
Cl c~ n 

(2.12) 

inf I,,(kq) = inf 
i.q’(2.2M2.11) ki,qS(2.2).(2.1 I) 

I(Y~(e)+o;e+Yb(q))dn- r, + rs 
0 1 (2.13) 

Variational principles (2.12) and (2.13) correspond to the following scheme of the numerical solution 

(2.12X2.13) c, (I).C(?) (2.6) (2.5) 

a20) =a e,(r),i(t),q(r) 3 l ,(t+Ar),~(r+At) + e2(r+Ar) +u2(r+At) 

From this scheme we understand the sufficiency of the definition of the variable el instead of i, for 
the numerical solution of the problem. 

We will write variational problem (1.4) for functional (2.8) when c = {h,, ir, q} 

inf B2(c) = inf J q2(.)-aie, -a; ‘* 
_ &’ 

c At 
-uie3 + Vp”q 

‘n 
(2.14) 

Conversions of problem (2.14), similar to (2.10), taking into account the note regarding the variables 
ir, and er lead to the following variational principle 
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inf 
c,.i,qE(2.2M2.1~) 

12(el.u,q)= 

= inf W&’ +te-el)W- W2t&‘) +y 
3 

te)+y 

4 

(q) &_ 

c, .il.qa(2.2).(2.1 I) At 

-r, + r31 

Variational principle (2.15) corresponds to the numerical scheme 

(2.15) 

(2.15) C,(J),&) (2.6) 

l 2(t) * e,(r+At), ti(t+At), q(t+At) 3 r,(t+At),t(t+At) =a q(t+At) 

It can be seen from the variational principles constructed that the minimum of the functionals 
(2.7) and (2.8), which characterize the rate of energy dissipation and accumulation, is reached on 
the solution of the initial problem when appropriate boundary conditions are specified for the variables 
c, over the whole boundary I (I, = 0, I3 = 0) of the domain of the solution CI and when these variables 
satisfy the conservation conditions (2.2) and the constraints (2.6) imposed. It is of interest to use similar 
considerations to derive the constitutive relations and relations between the thermodynamic forces in 
media with complex rheology from the condition for functionals of the form (1.5) to be a minimum. 
This approach was used when deriving the constitutive relations obtained previously from dimensionality 
considerations [15], for the fluid seepage in media with double porosity [8]. 

We will construct a variational principle for the set of variables IT,, u2, a3,p. The basis of the variational 
principle for this set is the functional 

@,b,)+ w;(a2’;~‘u~-‘)+cD3(u3)+~p(Vp) dR 
1 

Taking relations (2.6) into account we choose the independent variables b = {u,, II,p) and we write 
the initial variational problem 

i;f B,(b) = i;f ] 4 tp3(.) - eiu, - ~“2 - e$:, + q”vp da 
R 1 

We convert problem (2.16) to the variational principle 

i”,‘E,(b) = 

= infl cp,(.)-e;u, - 
bo [ 

k-l 4 -a2 k-l 

Ar u, -yu, -e’(o’-a,)+q”Vp da= 1 
= i;f i, [ 

k-l 

(p3(.)-%u, - ir ‘;,I (IIU + 6,p) + 4ypi.i 1 dfi = 

K 
k-l 

= if i, ‘p3() ’ -~a, +I;~n,j -(lii9i +q;i)p 

1 

dn- 

]=b$;,[~(~3(*)-$u,~-r2 .,,I 

r2 = j n,nj;;(ir, r4 = jq;pfl 
rz r4 

(2.16) 

with the conditions 

Diinj=F:onr,, p=pOon r3 (2.17) 

Hence, we obtain the variational principle 
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inf fs(u,*I-Lp)= 
ul JLp~(2.lM2.17) 

+@3@ + P - WI + @p<b>WQ - r2 + l-41 

In a similar way one can construct binary variational principles for all sets of variables. We will write, 
without derivation, a few of the constructed binary variational principles. 

The variational principle for the set ul, u2, e3,p (we take the independent variables ul, i,p) has the 
form 3 

inf sup 14(u,u,. p) = i;f ;pp 
.[ 

A(-@, (a,) - 
W;(u,)-Eps, 

At 
+%(d- 

" 0l.P 

-@,(Vp)+u,e-pdivri)dSZ-r, -r4] 

with the conditions 

The variational principle for the set of variables el, u2, 6% p (we take the independent variables 
ul, a2, II) has the form 

inf SUP 15(e,,a2,n.p)=inf 
l l o~,II.pc(2.1).(2.17) 

-~3(n+p-u2)-~,,(Vp)-u2e,)dn+r2 -r4] 

The variational principle for the set of variables el, ~2, u3, q (we take the independent variables 
ir, u2, II, q) has the form 

inf sup fs(e,,a2,11,q,p) = inf sup’ 
l l*9u~Jl*PE(2.1) 1 

j(\Y,(e,)_ w,(u2)~E~-'u2 - 

el*qo*,lI,PE(2.1 R 

-Q,(II+p-u,)+YJq)-u2e, -pdivq)dR+I’, +r,] 

with the conditions 

Note that, when deriving this variational principle, there is an additional variable p. 
One can similarly construct binary variational principles when modelling the solid phase by a Maxwell 

element, connected in series with an elastic Maxwell element, connected in series with an elastic element 
u3 = aW3(e3)/ae3). One of the variational principles constructed for the set el, ~2, 43,~ (we take the 
independent variables irl, U, p) has the form 

infsupI,(e,,u,p)= infsup J(\Y,(e,)+ 
c1.u p CI,U p [ * 

+ W2(Q- 4-l -e,At)- W2(&‘) + W,(e)>- W3(&‘) _ 

At At 

with the conditions 
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The quantities W2(#), W3(&‘), uf-’ are written for physical clarity and may be omitted as constants. 
A direct check shows that if the variations of the functionalsIi(.) are zero, this is equivalent to system 

(2.1-(2.6) with specified boundary conditions. The variational principles constructed hold when the 
potentials Vi(.) are non-differentiable and represent motion of viscoplastic and rigidly plastic bodies 
[16]. The proposed method of constructing variational principles does not require a knowledge of the 
boundary conditions. The boundary conditions required for the solution are determined when converting 
the variational problems. 

Note that individual variational principles [17-21],t obtained by different methods, have been derived 
using the proposed scheme. 

3. CONCLUSION 

Using the proposed approach, one can construct many new variational principles for well-known complex 
media or combinations of them, but this becomes a matter of technique and does not contain sufficient 
scientific novelty without applying variational principles to the solution of specific problems or without 
taking other features into account. The problems involved in obtaining constitutive relations (from 
considerations of the minimum rate of energy dissipation and accumulation) and the boundaT conditions 
for new media with complex rheology remain of interest. In this case an analysis of a complex medium 
begins with an investigation of the energy dissipation and accumulation mechanisms, and also the 
relations and constraints to which the parameters occurring in the potentials are subject. 

I wish to thank my teacher A. V Kosterin. 
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